If it's not what You are looking for type in the equation solver your own equation and let us solve it.
57y^2+13y-45=0
a = 57; b = 13; c = -45;
Δ = b2-4ac
Δ = 132-4·57·(-45)
Δ = 10429
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-\sqrt{10429}}{2*57}=\frac{-13-\sqrt{10429}}{114} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+\sqrt{10429}}{2*57}=\frac{-13+\sqrt{10429}}{114} $
| -8x-10=21-3x | | 32-24x-10=-24 | | 10-10y=-20 | | -6s+5.8=23.8 | | 1/4-1/3y=12 | | 3/2-6y=18 | | -3(-2.7x+0.2)+2.8x=31.01 | | (3+x)*(x)=88 | | 1/6(12-6x=5(x+4) | | 4x-5(3x+10)=19 | | C(x)=10.00+0.05x | | 2y-8×=1 | | 4/x+5=64 | | 3t(t-6)=0 | | 5(a+8)=4(2a+3)-5 | | 16t^2+36t+160=12 | | 9+7m=1+8m-3m | | y=6+28 | | -7+3p=1 | | 2(m−5)+2m−6=20 | | X3-2x2=3x | | 2x3-9x2-5x=0 | | h=20=35 | | 6m2-36m=0 | | 2w-10w=2w+2 | | 6/x-1=5 | | 2a2-8a=0 | | 4(x-8)/8=-2(3x+1)+2/5 | | 16x2+24x=-9 | | 3x(3x+4x)=2100 | | (2x)/7=(x-2)/14 | | 15k2-7k=4 |